#### INTRODUCTION

#### **Project purpose**

The purpose of our project is to analyze different features that may affect the departure of flights and predict the fight delays. We choose two airports that are close to us: BWI and DCA, and hope to help people to form a reasonable expectation of possible delays in their next trip.

#### **Data Source**

We get our data from the US Department of Transportation's Bureau of Transportation Statistics website. We select 1-year data of flights departing from BWI or DCA in 2017. All variables we think may affect the departure of flights are downloaded first and then processed differently based on their properties.

#### VARIABLES SELECTED

#### **Numerical Variables:**

- Departure Time
- □ Arrival Time

#### □ Wheels Off Time

- □ Wheels On Time(Land)
- Delayed Time of Departure
- □ Number of Cancelled Flight
- Number of Diverted Flight
- □ Weather Score
- □ Taxi-in
- □ Taxi-out
- Distance

#### **Categorical Variable:**

- □ Airline
- Original Airport
- Destination Airport
- Destination City Name

#### **Target Variable:**

- **D**elay Index
- 1 = Delayed over 15min
- 0 = Delayed within 15min

### DATA EXPLORATION

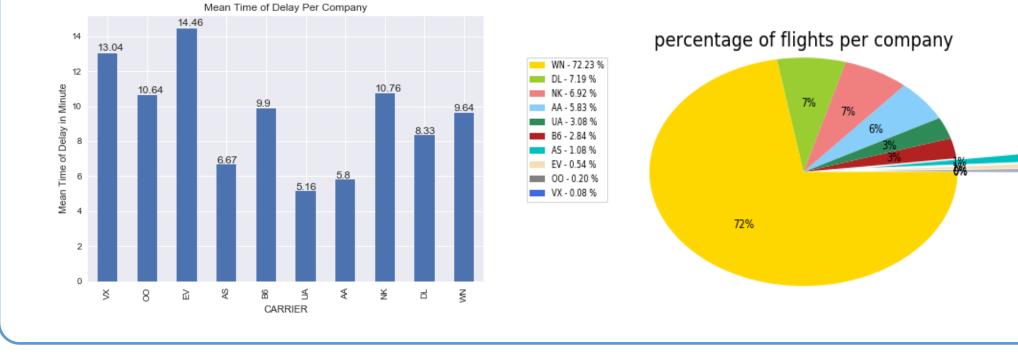
#### Impact of destination airports

The two figures below show the delaying rate with regard to different destination airports and months, and the departure airport is BWI and DCA respectively.



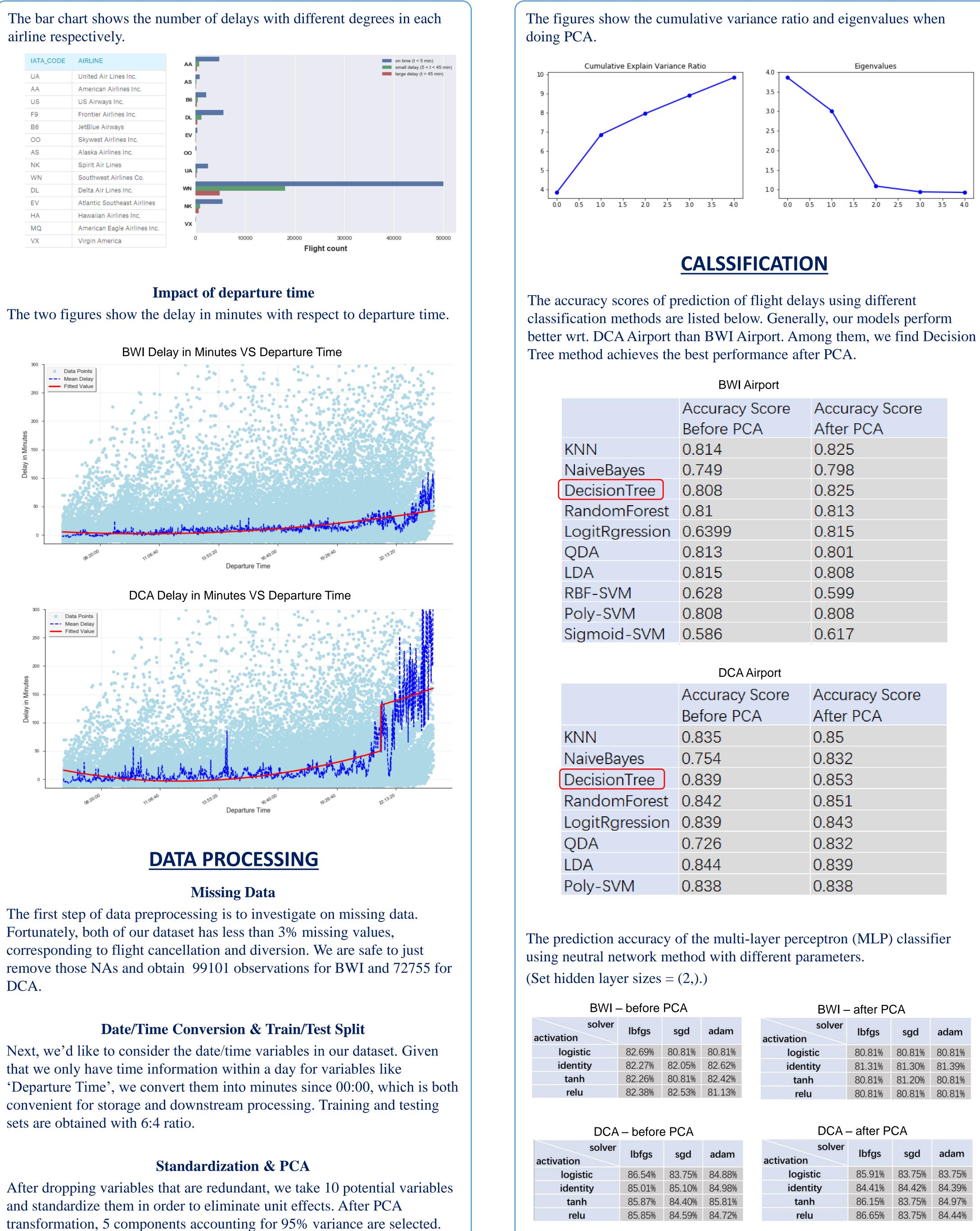
#### **Impact of airlines**

The figures below show the percentage of mean delay per company and percentage of flights per company with BWI as the departure airport.



# **Prediction of Flight Delays**

## Ancheng Deng, Ruijia Sun, Shuran Yu, Jiawen Zang, Yuchen Zhou 550.636 Data Mining



| BWI Airport    |                                                                                                                        |  |  |
|----------------|------------------------------------------------------------------------------------------------------------------------|--|--|
| Accuracy Score | Accuracy Score                                                                                                         |  |  |
| Before PCA     | After PCA                                                                                                              |  |  |
| 0.814          | 0.825                                                                                                                  |  |  |
| 0.749          | 0.798                                                                                                                  |  |  |
| 0.808          | 0.825                                                                                                                  |  |  |
| 0.81           | 0.813                                                                                                                  |  |  |
| 0.6399         | 0.815                                                                                                                  |  |  |
| 0.813          | 0.801                                                                                                                  |  |  |
| 0.815          | 0.808                                                                                                                  |  |  |
| 0.628          | 0.599                                                                                                                  |  |  |
| 0.808          | 0.808                                                                                                                  |  |  |
| 0.586          | 0.617                                                                                                                  |  |  |
|                | Accuracy Score<br>Before PCA<br>0.814<br>0.749<br>0.808<br>0.808<br>0.81<br>0.6399<br>0.813<br>0.815<br>0.628<br>0.808 |  |  |

| DCA Airport    |                |                |  |  |
|----------------|----------------|----------------|--|--|
|                | Accuracy Score | Accuracy Score |  |  |
|                | Before PCA     | After PCA      |  |  |
| KNN            | 0.835          | 0.85           |  |  |
| NaiveBayes     | 0.754          | 0.832          |  |  |
| DecisionTree   | 0.839          | 0.853          |  |  |
| RandomForest   | 0.842          | 0.851          |  |  |
| LogitRgression | 0.839          | 0.843          |  |  |
| QDA            | 0.726          | 0.832          |  |  |
| LDA            | 0.844          | 0.839          |  |  |
| Poly-SVM       | 0.838          | 0.838          |  |  |

| BWI -             | - before | PCA    |        | BWI -    | - after P | CA     |        |
|-------------------|----------|--------|--------|----------|-----------|--------|--------|
| solver activation | lbfgs    | sgd    | adam   | solver   | lbfgs     | sgd    | adam   |
| logistic          | 82.69%   | 80.81% | 80.81% | logistic | 80.81%    | 80.81% | 80.81% |
| identity          | 82.27%   | 82.05% | 82.62% | identity | 81.31%    | 81.30% | 81.39% |
| tanh              | 82.26%   | 80.81% | 82.42% | tanh     | 80.81%    | 81.20% | 80.81% |
| relu              | 82.38%   | 82.53% | 81.13% | relu     | 80.81%    | 80.81% | 80.81% |
|                   |          |        |        |          |           |        |        |

| DCA                  | <ul> <li>before</li> </ul> | PCA    |        |
|----------------------|----------------------------|--------|--------|
| solver<br>activation | lbfgs                      | sgd    | adam   |
| logistic             | 86.54%                     | 83.75% | 84.88% |
| identity             | 85.01%                     | 85.10% | 84.98% |
| tanh                 | 85.87%                     | 84.40% | 85.81% |
| relu                 | 85.85%                     | 84.59% | 84.72% |

| DCA – after PCA |        |        |        |
|-----------------|--------|--------|--------|
| solver          | lbfgs  | sgd    | adam   |
| logistic        | 85.91% | 83.75% | 83.75% |
| identity        | 84.41% | 84.42% | 84.39% |
| tanh            | 86.15% | 83.75% | 84.97% |
| relu            | 86.65% | 83.75% | 84.44% |

| follow<br>DCA:<br>also sl<br>delay<br>more<br>in dep<br>delay<br>wheel<br>logisti       |
|-----------------------------------------------------------------------------------------|
| <ul> <li>We stat</li> <li>Sev tran</li> <li>Am pre</li> <li>Giv pre pas</li> </ul>      |
| 5                                                                                       |
| Furthe<br>Airpo<br>comp<br>Varial<br>Plo<br>eac<br>wit<br>Fit<br>the<br>By<br>cor<br>Mo |
| dat<br>Un<br>Car<br>airp<br>Air<br>airp<br>D 550                                        |

#### **Logistic Regression Analysis**

Using a pure logistic regression for original data before PCA, we find the wing four explanatory variables are significant in both BWI and Departure time, Wheels off, Arrival time, and Weather. The results show there is a positive correlation between extreme weather and which also coincides with our intuition. The worse the weather, the likely a delay may take place. What's more, the positive coefficient parture time means that a larger depart time implies more likely a is going to take place. However, the negative correlation between Is off and delay is not able for us to further explain which means our tic model may be further improved.

#### **SUMMARY**

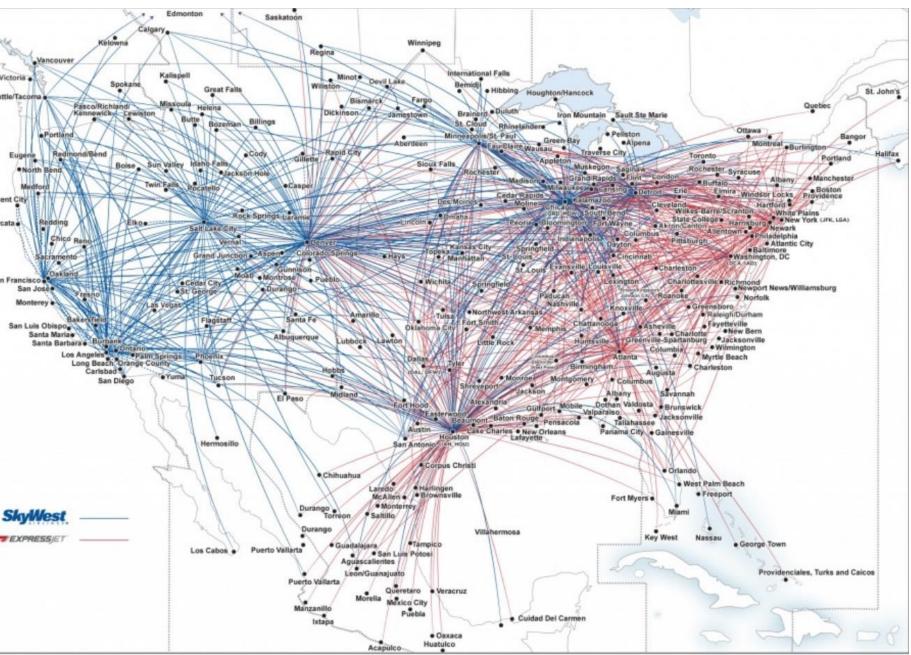
analyze the effects of different features on flights' departure on-time tus for BWI and DCA airports.

veral types of classifiers are trained before and after PCA

insformation to original datasets.

nong these classifiers, Decision Tree provides relatively better ediction results for both BWI and DCA airports.

ven conditions, like weather, destination city and airline, we could edict flights' on-time status with over 82% accuracy, which may help ssengers form reasonable expectation of their flights' departure time.



#### **FUTURE WORK**

ner, we can consider to discuss the Flight Delays of main International orts, such as JFK, ORD, IAD, in USA. Using the principle ponents from PCA as Predictor Variables, Delay Index as Response bles.

ot the relationship of Response Variables and Predictor Variables of ch airport, to see if there is any random effect between each airport or thin airport.

t a LMM model, to further discuss the effect of each parameter has on probability of Delay

v observing the plots such as Residuals vs Fitted Value, we can onsider further, to fit a Semi Parameter Model or Generalized Additive

odel, to make improvements.

nen we can try to predict the future delay rates in each Airports using ta such as Weather forecast, Scheduled Departure Time and so on.

#### REFERENCE

nderstanding the Reporting of Causes of Flight Delays and incellations ( https://www.bts.gov/topics/airlines-andports/understanding-reporting-causes-flight-delays-and-cancellations) rports and Airlines Data (https://www.bts.gov/topics/airlines-andports)

0.436 Data Mining Lecture Notes by Professor Tamas Budavari