Prediction of Flight Delays

Ancheng Deng, Ruijia Sun, Shuran Yu, Jiawen Zang, Yuchen Zhou 550.636 Data Mining

INTRODUCTION

Project purpose

The purpose of our project is to analyze differen features that may affect the departure of flights airports that are close to us: BWI and DCA, and hope to help people to form a reasonable expectation of possible delays in their next trip.

Data Source

S

We get our data from the US Department of Transportation's Bureau of Transportation Statistics website. We select 1-year data of flights departing Transportation Statistics website. We select 1 -year dat of ins
from BWI or DCA in 2017. All variables we think may affect the departure
of flights are downloaded first and then processed differently based on of flights are downloaded first and then processed differently based on their properties.

VARIABLES SELECTED

Numerical Variables:	Categorical Variable:
\square Departure Time	\square Airline
\square Arrival Time	\square Original Airport
\square Wheels Off Time	\square Destination Airport
\square Wheels On Time(Land)	\square Destination City Name
\square Delayed Time of Departure	
- Number of Cancelled Flight	
\square Number of Diverted Flight	Target Variable:
\square Weather Score	\square Delay Index
- Taxi-in	$1=$ Delayed over 15 min
- Taxi-out	$0=$ Delayed within 15 min
\square Distance	

DATA EXPLORATION

mpact of destination airports
The two figures below show the delaying rate with regard to different destination airports and months, and the departure airport is BWI and DCA respectively.

Impact of airlines
The figures below show the percentage of mean delay per company and percentage of flights per company with BWI as the departure airport.

Impact of departure time
The two figures show the delay in minutes with respect to departure time.

DATA PROCESSING

Missing Data
The first step of data preprocessing is to investigate on missing data. Fortunately, both of our dataset has less than 3% missing values, corresponding to flight cancellation and diversion. We are safe to just remove those NAs and obtain 99101 observations for BWI and 72755 for
DCA. DCA.

Date/Time Conversion \& Train/Test Split
Next, we'd like to consider the date/time variables in our dataset. Given
that we only have time information within a day for variables like that we only have time information within a day for variables like
'Departure Time', we convert them into minutes since 00 . 00 whi 'Departure Time', we convert them into mi. sets are obtained with $6: 4$ ratio

Standardization \& PCA
After dropping variables that are redundant, we take 10 potential variables and standardize them in order to eliminate unit effects. After PCA transformation, 5 components accounting for 95% variance are selected.

The figures show the cumulative variance ratio and eigenvalues when doing PCA

CALSSIFICATION

The accuracy scores of prediction of flight delays using different classification methods are listed below. Generally, our models perform etter wrt. DCA Airport than BWI Airport. Among them, we find Decisio Tree method achieves the best performance after PCA.

BWI Airport

		Accuracy Score			
Before PCA			Accuracy Score	After PCA	
:---	$	$	KNN	0.814	0.825
:---	:---	:---			
NaiveBayes	0.749	0.798			
DecisionTree	0.808	0.825			
RandomForest	0.81	0.813			
LogitRgression	0.6399	0.815			
QDA	0.813	0.801			
LDA	0.815	0.808			
RBF-SVM	0.628	0.599			
Poly-SVM	0.808	0.808			
Sigmoid-SVM	$\mathbf{0 . 5 8 6}$	0.617			

DCA Airport		
	Accuracy Score Before PCA	Accuracy Score After PCA
KNN	0.835	0.85
NaiveBayes	0.754	0.832
DecisionTree	0.839	0.853
RandomForest	0.842	0.851
LogitRgression	0.839	0.843
QDA	0.726	0.832
LDA	0.844	0.839
Poly-SVM	0.838	0.838

The prediction accuracy of the multi-layer perceptron (MLP) classifier using neutral network method with different parameters.
$($ Set hidden layer sizes $=(2).$,

Logistic Regression Analysis

Using a pure logistic regression for original data before PCA, we find the following four explanatory variables are significant in both BWI and
DCA: Departure time, Wheels off, Arrival time, and Weather. The results also show there is a positive correlation between extreme weather and delay which also coincides with our intuition. The worse the weather, the more likely a delay may take place. What's more, the positive coefficien in departure time means that a larger depart time implies more likely a delay is going to take place. However, the negative correlation between
wheels off and delay is not able for us to further explain which means our heels of and delay is not able for us to further explain which means logistic model may be further improved.

SUMMARY

- We analyze the effects of different features on flights' departure on-time status for BWI and DCA airports.
Several types of classifiers are trained before and after PC
transformation to original datasets.
\square Among these classifiers, Decision Tree provides relatively better
prediction results for bon BWI and DCA airports.
predict flights' on-time staus with over 82% ce and airline, we could passengers form reasonable expectation of their flights' departure time.

FUTURE WORK

Further, we can consider to discuss the Flight Delays of main International Airports, such as JFK, ORD, IAD, in USA. Using the principle
components from PCA as Predictor Variables, Delay Index as Response
Variable
Plot the relationship of Response Variables and Predictor Variables of each airport, to
within airport. the probability of Delay

- By observing the plots such as Residuals vs Fitted Value, we can
consider further, to fit a Semi Parameter Model or Generalized Additive Model, to make improvements.
-Then we can try to predict the future delay rates in each Airports using data such as Weather forecast, Scheduled Departure Time and so on

REFERENCE

U Understanding the Reporting of Causes of Flight Delays and cellations (https://www bs Cor dics/ierlines-and
deots/uderstanding-reporting-causes-flight-delays-and-cancellations)

- Airports and Airlines Data (https://www.bts.gov/topics/airlines-andairports)
-550.436 Data Mining Lecture Notes by Professor Tamas Budavari

